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Border-collision normal form

▶ Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.

▶ In our project, we study the two-dimensional border-collision normal form (Nusse
& Yorke, 1992), given by

fξ(x , y) =



[
τL 1
−δL 0

][
x

y

]
+

[
1
0

]
, x ≤ 0,[

τR 1
−δR 0

][
x

y

]
+

[
1
0

]
, x ≥ 0.

▶ Here (x , y) ∈ R2, and ξ = (τL, δL, τR , δR) ∈ R4 are the parameters.



Phase portrait of a chaotic attractor
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Figure: A sketch of the phase portrait of fξ with ξ ∈ ΦBYG.



Renormalisation operator

▶ Renormalisation involves showing that, for some members of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

▶ Although the second iterate f 2
ξ has four pieces, relevant dynamics arise in only two

of these. We have

f 2
ξ (x , y) =



[
τLτR − δL τR

−δRτL −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≤ 0,[

τ2
R − δR τR

−δRτR −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≥ 0.



Renormalisation operator
▶ Now f 2

ξ can be transformed to fg(ξ), where g is the renormalisation operator
(Ghosh & Simpson, 2022.) g : R4 → R4, given by

τ̃L = τ2
R − 2δR ,

δ̃L = δ2
R ,

τ̃R = τLτR − δL − δR ,

δ̃R = δLδR .

▶ We perform a coordinate change to put f 2
ξ in the normal form :

[
x̃ ′

ỹ ′

]
=



[
τ̃L 1
−δ̃L 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≤ 0,[

τ̃R 1
−δ̃R 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≥ 0.



Results

▶ We consider the parameter region

Φ =
{
ξ ∈ R4∣∣τL > δL + 1, δL > 0, τR < −(δR + 1), δR > 0

}
.

▶ Let

ϕ+(ξ) = ζ0 = δR − (τR + δL + δR − (1 + τR)λ
u
L)λ

u
L.

▶ The stable and the unstable manifolds of the fixed point Y intersect if and only if
ϕ+(ξ) ≤ 0.

▶ The attractor is often destroyed at ϕ+(ξ) = 0 which is a homoclinic bifurcation
(Banerjee, Yorke & Grebogi, 1998), and thus focused their attention on the region

ΦBYG =
{
ξ ∈ Φ

∣∣ϕ+(ξ) > 0
}
.
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Figure: The sketch of two-dimensional cross-section of ΦBYG when δL = δR = 0.01.



Results

Theorem (Ghosh & Simpson, 2022)

The Rn are non-empty, mutually disjoint, and converge to the fixed point (1, 0,−1, 0)
as n → ∞. Moreover,

ΦBYG ⊂
∞⋃
n=0

Rn.

Let,
Λ(ξ) = cl(W u(X )).

Theorem (Ghosh & Simpson, 2022)

For the map fξ with any ξ ∈ R0, Λ(ξ) is bounded, connected, and invariant. Moreover,
Λ(ξ) is chaotic (positive Lyapunov exponent).



Results

Theorem (Ghosh & Simpson, 2022)

For any ξ ∈ Rn where n ≥ 0, gn(ξ) ∈ R0 and there exist mutually disjoint sets
S0, S1, . . . ,S2n−1 ⊂ R2 such that fξ(Si ) = S(i+1) mod 2n and

f 2n
ξ |Si is affinely conjugate to fgn(ξ)|Λ(gn(ξ))

for each i ∈ {0, 1, . . . , 2n − 1}. Moreover,

2n−1⋃
i=0

Si = cl(W u(γn)),

where γn is a saddle-type periodic solution of our map fξ having the symbolic itinerary
Fn(R) given by Table 1.



Results

n Fn(W)

0 R

1 LR

2 RRLR

3 LRLRRRLR

4 RRLRRRLRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution rule
(L,R) 7→ (RR, LR) to W = R.
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Devaney Chaos
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Devaney Chaos

Theorem (Ghosh & Simpson, 2022)

Let ξ ∈ ΦBYG and suppose J1(ξ) > 1 and λs
L + |λs

R | < 1. Then W s(X ) is dense in a
triangular region containing Λ.

Theorem (Ghosh & Simpson, 2022)

Let ξ ∈ ΦBYG and suppose J1(ξ) > 1 and J2(ξ) < 1. Then, fξ is chaotic in the sense of
Devaney on Λ.



Generalised parameter region

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

Φ =
{
ξ ∈ R4 ∣∣ τL > |δL + 1|, τR < −|δR + 1|

}
.
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W s
0 (Y )

W u
0 (Y )

Y

X

W s
0 (X)

W u
0 (X)

C

D

S

T

Z

x

y

W s
0 (Y )

W u
0 (X)

Y

X
W s

0 (X)

W u
0 (Y )

C

T

S

D
Z x

y

(a) δL > 0, δR > 0 (b) δL < 0, δR < 0

Figure: Typical phase portraits of the chaotic attractor for the invertible case (δLδR > 0).



Typical phase portraits
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Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (δLδR < 0).



Invariant expanding cones

Chaos in ΦBYG can be proved by constructing an invariant expanding cone in tangent
space (Glendinning & Simpson, 2021). We have extended this to Φ.

C
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Figure: A sketch of an invariant expanding cone C and its image AC = {Av |v ∈ C}, given
A ∈ R2×2.



Robust Chaos in a generalised setting

Theorem (Ghosh, McLachlan, & Simpson, 2023)

For any ξ ∈ Φtrap ∩ Φcone, the normal form fξ has a topological attractor with a
positive Lyapunov exponent.



Robust Chaos in a generalised setting
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Figure: A 2D slice of Φtrap ∩ Φcone ⊂ R4.



The orientation-reversing case

▶ Let

Φ(2) = {ξ ∈ Φ | δL < 0, δR < 0} ,

be the subset of Φ for which the BCNF is orientation-reversing.
▶ The attractor Λ which is again a closure of the unstable manifold of X faces a

crisis at ζ(2)0 = 0 where

ζ
(2)
0 = ϕ−(ξ) = δR − (δR + τR − (1 + λu

R)λ
u
L)λ

u
L .



The orientation-reversing case

▶ Now, ξ ∈ Φ(2) implies g(ξ) ∈ Φ(1), so we again use the preimages of ϕ+(ξ) = 0
under g to define the region boundaries: Specifically we let

R(2)
0 =

{
ξ ∈ Φ(2)

∣∣∣ϕ−(ξ) > 0, ϕ+(g(ξ)) ≤ 0, α(ξ) < 0
}
,

R(2)
n =

{
ξ ∈ Φ(2)

∣∣∣ϕ+ (gn(ξ)) > 0, ϕ+
(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
, for all n ≥ 1.

where

α(ξ) = τLτR + (δL − 1)(δR − 1).

▶ This brings us to the proposition

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(2)
n with n ≥ 1, then g(ξ) ∈ R(1)

n−1.



The orientation-reversing case
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The non-invertible case δL > 0, δR < 0

▶ Let

Φ(3) = {ξ ∈ Φ | δL > 0, δR < 0} ,

meaning the map is invertible.
▶ In this region an attractor can be destroyed by crossing the homoclinic bifurcation

ϕ+(ξ) = 0 or the heteroclinic bifurcation ϕ−(ξ) = 0.
▶ we define

ϕmin(ξ) = min[ϕ+(ξ), ϕ−(ξ)].

and

R(3)
n =

{
ξ ∈ Φ(3)

∣∣∣ϕmin (g
n(ξ)) > 0, ϕmin

(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
,

for all n ≥ 0.



The non-invertible case δL > 0, δR < 0

▶ This brings us to a new proposition:

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(3)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.
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−τR

x−
1

y
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τ
L x−
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Xξ̃
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(3)
ex ) ∈ R(3)

0



The non-invertible case δL < 0, δR > 0

▶ It remains for us to consider

Φ(4) = {ξ ∈ Φ | δL < 0, δR > 0} ,

where the BCNF is again non-invertible.
▶ In this region the attractor is usually destroyed before the boundaries ϕ+(ξ) = 0

and ϕ−(ξ) = 0 in a heteroclinic bifurcation that cannot be characterised by an
explicit condition on the parameter values.

▶ Despite the extra complexities in Φ(4) it still appears that renormalisation is helpful
for explaining the bifurcation structure. Let

R(4)
0 =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(ξ) > 0, ϕmin(g(ξ)) ≤ 0, α(ξ) < 0
}
.

R(4)
n =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(g
n(ξ)) > 0, ϕmin(g

n+1(ξ)) ≤ 0, α(ξ) < 0, α(g(ξ)) < 0
}
.

(1)



The non-invertible case δL < 0, δR > 0

▶ This brings us to the new propostion:

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(4)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.
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y
=
−τ
R
x
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y
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−
τ
L x−
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0



Numerics
▶ We verify these bifurcation structures numerically by using Eckstein’s greatest

common divisor algorithm (Eckstein, 2006), described by Avrutin et al, 2007 to
estimate from sample orbits the number of connected components in the attractor.
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Numerics
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(a) δL = 0.5, δR = −0.4. (b) δL = 0.3, δR = −0.4.



Numerics
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Higher-dimensional setting

▶ Suppose AL has eigenvalues α > 1 and λL
2, . . . , λ

L
n ∈ C (counting multiplicity), and

AR has eigenvalues −β < −1 and λR
2 , . . . , λ

R
n ∈ C.

▶ Let r ≥ 0 be such that |λL
i |≤ r and |λR

i |≤ r for all i = 2, . . . , n.
▶ Observe that in the limit r → 0 the x2, . . . , xn dynamics are trivial and the x1

dynamics are governed by the skew tent map



Higher-dimensional setting
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Figure: Robust chaos parameter region for the two-dimensional map, with our
higher-dimensional construction portrayed on top of it. We chose n = 2 for simplicity.



Future Directions

▶ We expect our construction in the two-dimensional setting could be adapted to
verify robust chaos beyond the boundaries reported.

▶ It would be interesting to see if renormalisation schemes based on other symbolic
substitution rules can be used to explain parameter regimes where the BCNF has
attractors with other numbers of components, e.g. three components.

▶ Maps with multiple directions of instability should be just as relevant, giving the
possibility of so-called wild chaos, and it remains to treat these scenarios.

▶ It also remains to determine the analogue of the existence of a higher dimensional
robust chaos parameter region of the border-collision normal form, which has been
touched upon in the last slide (manuscript in preparation).
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The End

Thank you! Questions?


