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Border-collision normal form

» Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.

» In our project, we study the two-dimensional border-collision normal form (Nusse
& Yorke, 1992), given by
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» Here (x,y) € R?, and & = (71,0., 7R, 0g) € R* are the parameters.



Phase portrait of a chaotic attractor

Figure: A sketch of the phase portrait of f; with £ € ®pyq.



Renormalisation operator

» Renormalisation involves showing that, for some members of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

» Although the second iterate fg has four pieces, relevant dynamics arise in only two
of these. We have
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Renormalisation operator

> Now fé? can be transformed to fg(g), where g is the renormalisation operator
(Ghosh & Simpson, 2022.) g : R* — R*, given by

L = TR 26R,
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TR = TLTR — 0L — OR,
or = 0,0R.

» We perform a coordinate change to put f52 in the normal form :
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Results

» We consider the parameter region
®={¢eRYr >0,4+1,6 >0,7r < —(6g +1),6g >0} .
> Let
¢ (&) = o =06r — (TR + 0L + 0k — (L + TR)A])AL.

» The stable and the unstable manifolds of the fixed point Y intersect if and only if
¢ <0

» The attractor is often destroyed at ¢+ (&) = 0 which is a homoclinic bifurcation
(Banerjee, Yorke & Grebogi, 1998), and thus focused their attention on the region

bpyg = {f S ¢‘¢+(f) > 0} .



Results
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Figure: The sketch of two-dimensional cross-section of ®gyg when §; = dg = 0.01.



Results

Theorem (Ghosh & Simpson, 2022)

The R, are non-empty, mutually disjoint, and converge to the fixed point (1,0, —1,0)
as n — co. Moreover,

dpya C | Ro-
n=0

Let,
A(&) = l(WH(X)).

Theorem (Ghosh & Simpson, 2022)

For the map fz with any £ € Ro, N(&) is bounded, connected, and invariant. Moreover,
A(&) is chaotic (positive Lyapunov exponent).



Results

Theorem (Ghosh & Simpson, 2022)

For any £ € R, where n > 0, g"(§) € Ro and there exist mutually disjoint sets
S0, S1, -, Son_1 C R? such that :(S;) = S(i+1) mod 2n and

7‘52"]5,. is affinely conjugate to fzn(¢)|n(gn(¢))
for each i € {0,1,...,2" — 1}. Moreover,
271

U Si = cal(W(m)),
i=0

where v, is a saddle-type periodic solution of our map fe having the symbolic itinerary
F"(R) given by Table 1.



Results
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Table: The first 5 words in the sequence generated by repeatedly applying the substitution rule
(L,R) = (RR,LR) to W = R.



Results
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Devaney Chaos
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(a) 5/_ = 0.2, 5R =05 (b) 5L = 0.64 and 5R =07




Devaney Chaos

Theorem (Ghosh & Simpson, 2022)

Let £ € ®pyq and suppose J1(§) > 1 and A] + [Ag| < 1. Then W*(X) is dense in a
triangular region containing .

Theorem (Ghosh & Simpson, 2022)

Let £ € ®pyc and suppose Ji1(§) > 1 and Jo(§) < 1. Then, fe is chaotic in the sense of
Devaney on A.



Generalised parameter region

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

¢:{56R4’TL>‘5L+1|,TR<—|5R—|—1’}.



Typical phase portraits

(a)5L>O,(5R>0 (b)5L<0,5R<0

Figure: Typical phase portraits of the chaotic attractor for the invertible case (6,6g > 0).



Typical phase portraits

(3)5[_>0,5R<0 (b)5L<0,5R>0

Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (§,9g < 0).



Invariant expanding cones

Chaos in ®py@ can be proved by constructing an invariant expanding cone in tangent
space (Glendinning & Simpson, 2021). We have extended this to ®.

Figure: A sketch of an invariant expanding cone C and its image AC = {Av|v € C}, given
A€ R?%2,



Robust Chaos in a generalised setting

Theorem (Ghosh, McLachlan, & Simpson, 2023)

For any £ € ®ap N Peone, the normal form f; has a topological attractor with a
positive Lyapunov exponent.



Robust Chaos in a generalised setting

Figure: A 2D slice of ®¢pap N Peone C R




The orientation-reversing case

> Let
®@ ={ced|d <0,6r <0},

be the subset of ® for which the BCNF is orientation-reversing.
» The attractor A which is again a closure of the unstable manifold of X faces a

crisis at Céz) = 0 where

P = (&) = 6r — (Or + R — (1 + AB)AL)AL



The orientation-reversing case

> Now, ¢ € d() implies g(£) € ®(1), so we again use the preimages of ¢T(£) = 0
under g to define the region boundaries: Specifically we let

R = {g c o ‘ ¢~ (€) > 0,6 (g(€)) <0,a(¢) < 0} :
RSIZ) - {5 c o? ‘ ot (g"(€)) > 0, 0" (gn+1(€)) <0,0(8) < 0} , for all n > 1.
where
a(§) = 1Tr + (6L — 1)(0r — 1).
» This brings us to the proposition

Proposition (Ghosh, McLachlan, & Simpson, 2024)
If¢ € R with n > 1, then g(¢) € R™,.



The orientation-reversing case
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The non-invertible case 9; > 0,d0r < 0
> Let
o®) ={ced|d >0,6r <0},

meaning the map is invertible.

» In this region an attractor can be destroyed by crossing the homoclinic bifurcation
(&) = 0 or the heteroclinic bifurcation ¢~ (£) = 0.

> we define

$min(&) = min[p " (€), ¢~ ().

and

RE) = {& € 8@ | gumin (87(€)) > 0. dmin (8771(€)) 0, a(€) < 0},

for all n > 0.



The non-invertible case §; > 0,0 <0

» This brings us to a new proposition:

Proposition (Ghosh, McLachlan, & Simpson, 2024)
If€ e R$,3) with n > 1, then g(§) € Rf,?fl




The non-invertible case ; < 0,0g > 0

» |t remains for us to consider
o® = {ccd|d <005 >0},

where the BCNF is again non-invertible.

» In this region the attractor is usually destroyed before the boundaries ¢ (&) = 0
and ¢~ (&) = 0 in a heteroclinic bifurcation that cannot be characterised by an
explicit condition on the parameter values.

> Despite the extra complexities in ®(*) it still appears that renormalisation is helpful
for explaining the bifurcation structure. Let

R = {& € 0@ | 6n(€) > 0, dmin(8(€)) <0, a(€) < 0}

REY = {€ € 0@ | H1n(g"(€)) > 0, Guin(g"1(€)) < 0, a(€) < 0,a(g(£)) < 0}
M



The non-invertible case §; < 0,0 >0

» This brings us to the new propostion:

Proposition (Ghosh, McLachlan, & Simpson, 2024)
If¢ e R with n > 1, then g(&) € Rf,?fl
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Numerics

> We verify these bifurcation structures numerically by using Eckstein's greatest

a©=0 R RY

common divisor algorithm (Eckstein, 2006), described by Avrutin et al, 2007 to

estimate from sample orbits the number of connected components in the attractor.
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(b) 6, = 03,65 = —0.4.
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Higher-dimensional setting

> Suppose A; has eigenvalues o > 1 and A5, ..., AL € C (counting multiplicity), and
AR has eigenvalues —3 < —1 and \§,... AR e C.

> Let r > 0 be such that [AL|< rand [AR|<rforalli=2,...,n.

» Observe that in the limit r — 0 the x», ..., x, dynamics are trivial and the x;
dynamics are governed by the skew tent map



Higher-dimensional setting
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Figure: Robust chaos parameter region for the two-dimensional map, with our
higher-dimensional construction portrayed on top of it. We chose n = 2 for simplicity.



Future Directions

> We expect our construction in the two-dimensional setting could be adapted to
verify robust chaos beyond the boundaries reported.

» It would be interesting to see if renormalisation schemes based on other symbolic
substitution rules can be used to explain parameter regimes where the BCNF has
attractors with other numbers of components, e.g. three components.

» Maps with multiple directions of instability should be just as relevant, giving the
possibility of so-called wild chaos, and it remains to treat these scenarios.

» It also remains to determine the analogue of the existence of a higher dimensional
robust chaos parameter region of the border-collision normal form, which has been
touched upon in the last slide (manuscript in preparation).
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The End

Thank you! Questions?



